Heavy-duty diesel (HDD) engines are the primary propulsion source for most heavy-duty vehicle freight movement and have been equipped with an array of aftertreatment devices to comply with more stringent emissions regulations. In light of concerns about the transportation sector's influence on climate change, legislators are introducing requirements calling for significant reductions in fuel consumption and thereby, greenhouse gas (GHG) emission over the coming decades. Advanced engine concepts and technologies will be needed to boost engine efficiencies. However, increasing the engine's efficiency may result in a reduction in thermal energy of the exhaust gas, thus contributing to lower exhaust temperature, potentially affecting aftertreatment activity, and consequently rate of regulated pollutants.This study investigates the possible utilization of waste heat recovered from a HDD engine as a means to offset fuel penalty incurred during thermal management of SCR system. Experiments were aimed at conducting detailed energy audit of a MY 2011 heavy-duty diesel engine equipped with a DPF and SCR. A MATLAB® based steady-state simulation tool was developed to simulate a waste heat recovery system (WHRS) based on an Organic Rankine Cycle (ORC), working with three different organic fluids, and primarily harvesting energy from combinations of the engine's heat dissipating circuits. The simulations were based on experimental data obtained through a comprehensive characterization of engine energy distribution using a heavy-duty engine dynamometer.Results obtained from the ORC-WHRS simulation over the engine operating points showed that the working fluids, R123 and R245fa with utilizing post-SCR exhaust stream, and exhaust gas recirculation (EGR) cooler as the two heat sources provided the optimum performance. As the primary goal of this study was to understand the utilization of a WHRS as a strategy for thermal management of an after-treatment system in reducing NOx levels, the study further investigates into the dynamic operation of a heavy-duty diesel engine from an actual vehicle testing. Assessment on magnitude of the energy generated for the transient vehicle operation does show ORC-WHRS as a feasible application in reaching the desired thermal state of a typical HDD engine SCR system.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Investigating the Potential of Waste Heat Recovery as a Pathway for Heavy-Duty Exhaust Aftertreatment Thermal Management


    Additional title:

    Sae Technical Papers



    Conference:

    SAE 2015 World Congress & Exhibition ; 2015



    Publication date :

    2015-04-14




    Type of media :

    Conference paper


    Type of material :

    Print


    Language :

    English




    Investigating the Potential of Waste Heat Recovery as a Pathway for Heavy-Duty Exhaust Aftertreatment Thermal Management

    Pradhan, Saroj / Thiruvengadam, Arvind / Thiruvengadam, Pragalath et al. | British Library Conference Proceedings | 2015


    Investigating the potential of waste heat recovery as a pathway for heavy-duty exhaust aftertreament thermal management

    Pradhan,S. / Thiruvengadam,A. / Thiruvengadam,P. et al. | Automotive engineering | 2015


    Thermal Management on Demand; the Exhaust Aftertreatment Solution for Future Heavy Duty Application

    Brück, Rolf / Presti+, Manuel / Keck, Mathias et al. | TIBKAT | 2021


    Highly integrated exhaust gas aftertreatment systems in heavy-duty applications

    Schaml, S. / Rothe, D. / Lutz, F. et al. | Springer Verlag | 2017


    Influence of Exhaust Aftertreatment Devices on Heavy-Duty Diesel Engine's Particulate Emissions

    George Toussimis / Euripides Lois / Hartmut L-uacute et al. | AIAA | 2000