This paper presents a CFD simulation methodology for solving complex physics of methane/air swirling turbulent flame impinging on a flat surface. Turbulent Flow in burner is simulated using Re-Normalized Group k-ε model while Stress-omega Reynolds Stress Model is used for flame structure. Methane/air combustion is simulated using global combustion reaction mechanism. To account for Turbulence-Chemistry Interaction of methane/air combustion, Eddy - Dissipation Model is used. The effect of varying plate distance to burner exit nozzle diameter is also investigated and comparisons of simulated results with experiments are discussed. Change in flame structure is observed with variation of plate distance from burner exit. A dip in the heat flux distribution is observed for all cases. This is due to the presence of central weak flow region created at and around the central axis due to swirl.
Numerical Simulation of Heat Transfer Characteristics of Swirling Turbulent Flame Impinging on Flat Surface
Sae Technical Papers
SAE 2016 World Congress and Exhibition ; 2016
2016-04-05
Conference paper
English
Automotive engineering | 2016
|British Library Conference Proceedings | 2016
|British Library Online Contents | 2017
|Numerical Study of Swirling and Non-Swirling Annular Impinging Jets with Heat Transfer
British Library Conference Proceedings | 2005
|