This paper presents the analytical model of a brake system to investigate the low frequency vibration. The purpose of this study is to model and validate brake system vibration. The brake model was developed by applying the theory of sinusoidal traveling waves and wave super positioning. An experimental modal analysis (EMA) of the brake disc has been carried out to obtain the natural frequencies. Wave equations were then formulated based on the experimental data. These waves are super positioned to be shown as a single spatial and temporal function that will provide periodic excitation to the brake pad. The brake pad was modeled as a beam element with distributed friction force. The differential equations were solved using Green's dynamic formulation. The model is capable of predicting vibration behavior of the brake pad for whole range below 1 kHz which has shown strong agreement with the experimental results validated through in-house brake dynamometer. This brake model can serve as a tool to investigate the relationship between braking parameters and other variables within the brake system.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    An Analytical Model to Identify Brake System Vibration within the Low Frequency Domain


    Additional title:

    Sae Technical Papers



    Conference:

    SAE 2013 Brake Colloquium & Exhibition - 31st Annual ; 2013



    Publication date :

    2013-09-30




    Type of media :

    Conference paper


    Type of material :

    Print


    Language :

    English




    An Analytical Model to Identify Brake System Vibration within the Low Frequency Domain

    Magaswaran, K. / Singh, A.S.P. / Hassan, M.Z. et al. | British Library Conference Proceedings | 2013


    Validation of analytical model of vehicle brake system

    Guener,R. / Yavuz,N. / Kopmaz,O. et al. | Automotive engineering | 2004


    Validation of analytical model of vehicle brake system

    Güner, R. / Yavuz, N. / Kopmaz, O. et al. | Tema Archive | 2004



    Brake squeal prediction, a semi-analytical model

    Mastinu,G. / Gobbi,M. / Tarallo,E. et al. | Automotive engineering | 2012