Utilizing heat of exhaust gases for on-board alcohol reforming process (thermo-chemical recuperation - TCR) is a promising way of increasing the internal combustion engine (ICE) efficiency and emissions mitigation. Knowledge of the laminar burning velocity of alcohol reforming products is necessary for simulating performance of internal combustion engines with TCR and for in-depth studies of the combustion process.Laminar burning velocities of H2, CO, CO2 and CH4 mixtures that simulate methanol and ethanol steam reforming products for various water-alcohol ratios are investigated in this work. The influence of flame cellularity on burning velocity is studied as well. The burning velocity is measured experimentally using a spherical closed combustion vessel. Measurements are taken by a pressure measurement method during the pressure-rise period and prior to it by a high-speed Schlieren photography.The burning velocity is mapped as a function of CO and CH4 selectivity's of the reforming process as well as for various air-excess factors (λ=1, 1.3, 1.6, 1.9). Maximal burning velocities up to 140cm/sec are observed for mixtures produced from reforming processes with zero CH4 selectivity. For stoichiometric mixtures the burning velocity is found to be not affected by change in CO selectivity. In contrast, for lean mixtures, an increase in CO selectivity is shown to yield lower burning velocities. Higher CH4 selectivity results in strong decrease in burning velocities for both stoichiometric and lean mixtures. Flame cellularity that increases burning velocity is found to occur earlier in mixtures with higher hydrogen content and at higher air-excess factors.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Laminar Burning Velocity of Alcohol Reforming Products and Effects of Cellularity on Flame Propagation


    Additional title:

    Sae Technical Papers


    Contributors:

    Conference:

    SAE 2015 World Congress & Exhibition ; 2015



    Publication date :

    2015-04-14




    Type of media :

    Conference paper


    Type of material :

    Print


    Language :

    English




    Laminar Burning Velocity of Alcohol Reforming Products and Effects of Cellularity on Flame Propagation

    Omari, Ahmad / Shapiro, Michael / Tartakovsky, Leonid | British Library Conference Proceedings | 2015


    Flame propagation and laminar burning velocity measurements in a cylindrical combustion chamber using particle image velocimetry

    Zhou,M. / Garner,C.P. / Loughborough Univ.of Technology,GB | Automotive engineering | 1995




    FLAME PROPAGATION IN LAMINAR BOUNDARY LAYERS

    Kelly, J. R. / Toong, T. Y. / Wu, W. S. | NTRS | 1963