Most do not consider there to be a risk in pushing on, bumping into or falling against an elevator door from the hallway side. However, the lack of the elevator cars presence alone, and the potential for severe injury or even death make this seemingly mundane situation potentially critical. Standards exist relative to such situations, and past and current designs attempt to account for this possibility, still people get injured interacting with these doors every year. In order to evaluate a real-world elevator door system's ability to withstand the quasi-static and impactive loads that can be placed on it by the general public during its life, both intentionally and unintentionally, a predictive tool is needed. This work represents the combination of empirical laboratory testing and numerical modeling of a typical elevator door system exposed to quasi-static and dynamic loading. The test procedures and methodology employed in this work provided repeatable and reliable results in quasi-static and dynamic testing. Numerical simulation using MADYMO established a robust and accurate quasi-static model of a primary door failure mode. The quasi-static MADYMO model can be used for quasi-static loading at any height of load application on the door and at any gib engagement depth up to full engagement with reliable and repeatable results. The dynamic MADYMO model showed accuracy at the 3 mm (0.12 in.) gib engagement depth at any contact height and any contact speed. A preliminary 6 mm (0.24 in.) gib engagement depth dynamic model has been verified for full-mass impacts of up to 1.5 m/s (4.8 ft/s).


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Testing and Modeling of Elevator Door Retention During Hallway Applied Lateral Loads


    Additional title:

    Sae Technical Papers


    Contributors:

    Conference:

    Digital Human Modeling for Design and Engineering Conference and Exhibition ; 2009



    Publication date :

    2009-06-09




    Type of media :

    Conference paper


    Type of material :

    Print


    Language :

    English




    Registration (Heliconia Hallway)

    IEEE | 2024

    Free access

    Automatic determination of position and orientation of elevator device entry terminals and hallway fixtures

    WITCZAK TADEUSZ PAWEL / BOGLI CRAIG DREW / OGGIANU STELLA M | European Patent Office | 2021

    Free access

    AUTOMATIC DETERMINATION OF POSITION AND ORIENTATION OF ELEVATOR DEVICE ENTRY TERMINALS AND HALLWAY FIXTURES

    WITCZAK TADEUSZ PAWEL / BOGLI CRAIG DREW / OGGIANU STELLA M | European Patent Office | 2025

    Free access

    SMART MIRROR APPLIED ELEVATOR DOOR

    CHOI SUNG HYUN / LEE JAE HEON | European Patent Office | 2018

    Free access

    AUTOMATIC DETERMINATION OF POSITION AND ORIENTATION OF ELEVATOR DEVICE ENTRY TERMINALS AND HALLWAY FIXTURES

    WITCZAK TADEUSZ PAWEL / BOGLI CRAIG DREW / OGGIANU STELLA M | European Patent Office | 2020

    Free access