Current and future engine technologies and fuels are mutually dependent. The increased use of alternative fuels has been linked to deterioration in performance of injectors, fuel filters and engines as a result of insoluble deposit formation. The present work aimed to study the impact of Diesel/biodiesel blends formulation (biodiesel feedstock and content) and temperature on the oxidation stability based on total acid number (TAN). The biofuels used in the fuel matrix were: rapeseed, soy and palm methyl esters (RME, SME and PME respectively). The Diesel/biodiesel blends were made with 0%v/v, 5%v/v, 10% v/v and 20%v/v of biodiesel blended with additive-free new Diesel.The oxidation stability of Diesel/biodiesel blends was to evaluate during 6 months fuels storage, under 20°C and 40°C, and fuels severe oxidation into a reactor vessel to better understand the parameters leading to fuel oxidation on-board. Considering the results of fuel oxidation, it is possible to assume that at 20°C FA ME can be used safely up to 20%v/v regardless of the feedstock type, at 40°C condition SME and RME can be used safely up to B5, 5%v/v of FAME and PME can be used safely up to 20%v/v.
Oxidation Stability of Diesel/Biodiesel Blends: Impact of Fuels Physical-Chemical Properties over Ageing During Storage and Accelerated Oxidation
Sae Technical Papers
JSAE/SAE 2015 International Powertrains, Fuels & Lubricants Meeting ; 2015
2015-09-01
Conference paper
English
British Library Conference Proceedings | 2016
|Impact of Oxidation on Lubricating Properties of Biodiesel Blends
SAE Technical Papers | 2013
|Impact of Oxidation on Lubricating Properties of Biodiesel Blends
British Library Conference Proceedings | 2013
|Evaluation of the oxidation stability of diesel/biodiesel blends using the modified rancimat method
Automotive engineering | 2009
|