Virtual coupling (VC) is an emerging concept that is gaining popularity in railway control systems. It has the potential to significantly enhance railway capacity and flexibility, and has attracted considerable research attention. This study explores several key aspects of VC research in the context of urban rail transit systems, including system structure, train platoon control method, scenario definition, and train scheduling. The paper presents three main contributions: Firstly, it proposes a potential system structure for VC and discusses infrastructure occupancy procedures within typical operational scenarios. Secondly, a VC platoon controller based on the adaptive back-stepping method is designed to realize the function of the operation layer. Thirdly, combining operational scenario definition and control methods, we propose a VC train scheduling method based on mixed integer linear programming (MILP). A case study demonstrated that the proposed solution could effectively achieve the primary functions of VC.
A holistic solution to virtual coupling based urban rail train control system
2024-07-01
Article (Journal)
Electronic Resource
English
Research on Efficient Coordination Control System of Virtual Coupling for Urban Rail Train
DOAJ | 2024
|Research on Cooperative Velocity Planning Technology for Urban Rail Train Virtual Coupling
DOAJ | 2024
|Optimization of Skip-Stop Train Schedule in Urban Rail Transit Under Virtual Coupling
DOAJ | 2025
|Urban rail train and transmission circuit of train hard line signal of urban rail train
European Patent Office | 2020
|