Sierra Nevada Corporation (SNC) has developed rotary and fixed wing millimeter wave radar enhanced vision systems. The Helicopter Autonomous Landing System (HALS) is a rotary-wing enhanced vision system that enables multi-ship landing, takeoff, and enroute flight in Degraded Visual Environments (DVE). HALS has been successfully flight tested in a variety of scenarios, from brown-out DVE landings, to enroute flight over mountainous terrain, to wire/cable detection during low-level flight. The Radar Enhanced Vision Systems (REVS) is a fixed-wing Enhanced Flight Vision System (EFVS) undergoing prototype development testing. Both systems are based on a fast-scanning, threedimensional 94 GHz radar that produces real-time terrain and obstacle imagery. The radar imagery is fused with synthetic imagery of the surrounding terrain to form a long-range, wide field-of-view display. A symbology overlay is added to provide aircraft state information and, for HALS, approach and landing command guidance cuing. The combination of see-through imagery and symbology provides the key information a pilot needs to perform safe flight operations in DVE conditions. This paper discusses the HALS and REVS systems and technology, presents imagery, and summarizes the recent flight test results.
MMW radar enhanced vision systems: the Helicopter Autonomous Landing System (HALS) and Radar-Enhanced Vision System (REVS) are rotary and fixed wing enhanced flight vision systems that enable safe flight operations in degraded visual environments
Degraded Visual Environments: Enhanced, Synthetic, and External Vision Solutions 2013 ; 2013 ; Baltimore,Maryland,USA
Proc. SPIE ; 8737
2013-05-16
Conference paper
Electronic Resource
English
British Library Conference Proceedings | 2013
|REVS: a radar-based enhanced vision system for degraded visual environments [9087-7]
British Library Conference Proceedings | 2014
|