Action anticipation, intent prediction, and proactive behavior are all desirable characteristics for autonomous driving policies in interactive scenarios. Paramount, however, is ensuring safety on the road—a key challenge in doing so is accounting for uncertainty in human driver actions without unduly impacting planner performance. This paper introduces a minimally-interventional safety controller operating within an autonomous vehicle control stack with the role of ensuring collision-free interaction with an externally controlled (e.g., human-driven) counterpart. We leverage reachability analysis to construct a real-time (100 Hz) controller that serves the dual role of (1) tracking an input trajectory from a higher-level planning algorithm using model predictive control, and (2) assuring safety through maintaining the availability of a collision-free escape maneuver as a persistent constraint regardless of whatever future actions the other car takes. A full-scale steer-by-wire platform is used to conduct traffic weaving experiments wherein the two cars, initially side-by-side, must swap lanes in a limited amount of time and distance, emulating cars merging onto/off of a highway. We demonstrate that, with our control stack, the autonomous vehicle is able to avoid collision even when the other car defies the planner’s expectations and takes dangerous actions, either carelessly or with the intent to collide, and otherwise deviates minimally from the planned trajectory to the extent required to maintain safety.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    On Infusing Reachability-Based Safety Assurance Within Probabilistic Planning Frameworks for Human-Robot Vehicle Interactions


    Additional title:

    Springer Proceedings in Advanced Robotics


    Contributors:

    Conference:

    International Symposium on Experimental Robotics ; 2018 ; Buenos Aires, Argentina November 05, 2018 - November 08, 2018



    Publication date :

    2020-01-23


    Size :

    14 pages





    Type of media :

    Article/Chapter (Book)


    Type of material :

    Electronic Resource


    Language :

    English






    Infusing software assurance research techniques into use

    Pressburger, T. / Di Vito, B. / Feather, M.S. et al. | IEEE | 2006


    A System-Based Safety Assurance Framework for Human-Vehicle Interactions

    Jennings, Paul / Chen, Shufeng / Khastgir, Siddartha | SAE | 2023


    A System-Based Safety Assurance Framework for Human-Vehicle Interactions

    Chen, Shufeng / Khastgir, Siddartha / Jennings, Paul | British Library Conference Proceedings | 2023