Semantic segmentation plays a crucial role in autonomous driving systems, serving as a key technology for understanding and interpreting the road environment. Most existing semantic segmentation networks strive for high accuracy, but achieving true real-time performance while maintaining high accuracy remains a challenge. However, autonomous driving systems require extremely high reaction speed and real-time processing capabilities, and any processing delay may lead to safety risks. To solve this problem, this paper proposes a lightweight dual-branch multi-scale network (LDMSNet) to achieve real-time semantic segmentation. First, the effective dilated bottleneck (EDB) is proposed to efficiently extract semantic information and spatial information using complementary dual-branch structure and depth-wise dilated convolution. Second, the multi-scale pyramid pooling module (MSPPM) is proposed, which uses a hierarchical residual structure and combines with dilated convolution to extract detailed information from low-resolution branches. Third, the polarized self-attention mechanism (PSA) is introduced to further enhance the interaction and correlation between features and improve the ability to perceive global information. The experimental results show that LDMSNet achieves 74.46% MIoU at 113FPS on the Cityscapes dataset, 71.51% MloU at 153FPS on the CamVid dataset and 77.41% MIoU at 170FPS on the StreetView dataset, effectively balancing speed and accuracy compared to state-of-the-art models.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    LDMSNet: Lightweight Dual-Branch Multi-Scale Network for Real-Time Semantic Segmentation of Autonomous Driving


    Subtitle :

    LDMSNet: Lightweight Dual-Branch Multi-Scale Network… H. Yang et al.


    Additional title:

    Int.J Automot. Technol.


    Contributors:
    Yang, Haoran (author) / Zhang, Dan (author) / Liu, Jiazai (author) / Cao, Zekun (author) / Wang, Na (author)

    Published in:

    Publication date :

    2025-04-01


    Size :

    15 pages




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English





    MLRFNet: Multi-Level Real-Time Fusion Semantic Segmentation Network for Autonomous Driving

    Ma, Xiaochuan / Xun, Zhijie / Mao, Bomin et al. | IEEE | 2025




    CSNet: Cross-Stage Subtraction Network for Real-Time Semantic Segmentation in Autonomous Driving

    Elhassan, Mohammed A. M. / Zhou, Changjun / Zhu, Donglin et al. | IEEE | 2025