In the framework of the French Space Operations Act (FSOA) [1-2], it is now necessary to take into account the orbit lifetime of the satellites, in particular for the Low Earth Orbits (LEO), whose population is increasing. But after 2020, it will be mandatory to foresee a controlled re-entry, except if it is actually unfeasible. Currently, only few spacecraft, like the ATV (Automatic Transfer Vehicle), is able to perform such de-orbit manoeuvres for a controlled re-entry. For more classical satellites, such manoeuvres will imply a too important amount of propellant. Thus, it could be interesting to analyse de-orbit strategies with low-thrusts provided by an electric propulsive system. Indeed, even though these low-thrusts do not allow to bring the satellite on a directly re-entering orbit, it may be envisaged to position the spacecraft on an orbit whose altitude is low enough to be able to predict its re-entry within some hours, therefore limiting the debris fallout zone to a small number of orbit ground-tracks, chosen in order to decrease the risk on ground for human population.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    De-Orbit Strategies With Low-Thrust Propulsion


    Contributors:

    Published in:

    Space Safety is No Accident ; Chapter : 7 ; 59-68


    Publication date :

    2015-01-01


    Size :

    10 pages




    Type of media :

    Article/Chapter (Book)


    Type of material :

    Electronic Resource


    Language :

    English