In learning robotics, techniques such as Learning from Demonstrations (LfD) and Reinforcement Learning (RL) have become widely popular among developers. However, this approximations can result in inefficient strategies when it comes to train more than one agent interacting in the same space with several objects and unknown obstacles. To solve this problematic, Reinforcement Learning from Demonstration (RLfD) allows the agent to learn and evaluate its performance from a set of demonstrations provided by a human expert while generalising from them using RL training. In dual-robot applications this approach is suitable for training agents that perform collaborative tasks. For this reason, a dual-robot haptic interface has been designed in order to produce dual manipulation trajectories to feed a RLfD agent. Haptics allows to perform high quality demonstrations following an impedance control approach. Trajectories obtained will be used as positive demonstrations so the training environment can generate automatic ones. As a result, this dual-robot haptic interface will provide a few trajectory demonstrations on dual manipulation in order to train agents using RL strategies. The aim of this research is to generate trajectories with this dual-robot haptic interface to train one or more agents following RLfD paradigms. Results show that trajectories performed with this interface present less error and deviation than others performed with a non-haptic interface, increasing the quality of the training data.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Trajectory Generation Using Dual-Robot Haptic Interface for Reinforcement Learning from Demonstration


    Additional title:

    Lect. Notes in Networks, Syst.



    Conference:

    Iberian Robotics conference ; 2023 ; Coimbra, Portugal November 22, 2023 - November 24, 2023



    Publication date :

    2024-04-27


    Size :

    12 pages





    Type of media :

    Article/Chapter (Book)


    Type of material :

    Electronic Resource


    Language :

    English




    Learning force-based robot skills from haptic demonstration

    Rozo Castañeda, Leonel / Jimenez Schlegl, Pablo / Torras, Carme | BASE | 2010

    Free access

    Learning force-based robot skills from haptic demonstration

    Rozo, Leonel / Jiménez Schlegl, Pablo / Torras, Carme | BASE | 2010

    Free access

    Robot learning of container-emptying skills through haptic demonstration

    Rozo, Leonel / Jiménez Schlegl, Pablo / Torras, Carme | BASE | 2009

    Free access

    Demonstration Shaped Reward Machine for Robot Assembly Reinforcement Learning Tasks

    Xiao, Ruihong / Zhan, Hong / Jiang, Yiming et al. | Springer Verlag | 2023