Direct simulations are carried out to investigate the influence of unsteady heat flux transfer on transonic shock-boundary layer interaction; for flow past SHM-1 airfoil at a free-stream Mach number M \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{\infty }$$\end{document} = 0.72 and angle of attack α = 0 . 38 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha = 0.38^{\circ }$$\end{document}. Flux is added in a periodic manner through a region ( 8 - 18 % o f t h e c h o r d ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(8{-}18\% \; of \;the \;chord)$$\end{document} located on the suction side of the airfoil, with multiple values of exciter time period ( T e = 2 , 4 ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(T_{\text {e}}=2,4)$$\end{document} considered for our simulation. We show that addition of unsteady heat flux delayed shock formation, along with significant modifications in it’s structure. The time-averaged C p \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{\text {p}}$$\end{document} distributions revealed a shift in the shock towards the aft, by approximately 5% of the chord; along with an increased lift near the trailing edge, suggesting a nose-down stabilizing influence. Primarily, it is noted that the additional heat flux resulted in an overall increase of the aerodynamic efficiency (lift to drag ratio) by approximately 10 % \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10\%$$\end{document}.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Non-adiabatic Wall Effects on Transonic Shock/Boundary Layer Interaction


    Additional title:

    Lect.Notes Mechanical Engineering


    Contributors:


    Publication date :

    2021-03-19


    Size :

    21 pages





    Type of media :

    Article/Chapter (Book)


    Type of material :

    Electronic Resource


    Language :

    English