Route planning is usually carried out to achieve a single objective such as to minimize transport cost, distance traveled or travel time. This article explores an approach to multi-objective route planning using a genetic algorithm (GA) and geographical information system (GIS) approach. The method is applied to the case of a tourist sight-seeing itinerary, where a route is planned by a tour operator to cover a set of places of interest within a given area. The route planning takes into account four criteria including travel time, vehicle operating cost, safety and surrounding scenic view quality. The multi-objective route planning in this paper can be viewed as an extension of the traditional traveling salesman problem (TSP) since a tourist needs to pass through a number of sight points. The four criteria are quantified using the spatial analytic functions of GIS and a generalized cost for each link is calculated. As different criteria play different roles in the route selection process, and the best order of the multiple points needs to be determined, a bi-level GA has been devised. The upper level aims to determine the weights of each criterion, while the lower level attempts to determine the best order of the sights to be visited based on the new generalized cost that is derived from the weights at the upper level. Both levels collaborate during the iterations and the route with the minimal generalized cost is thus determined. The above sight-seeing route planning methodology has been examined in a region within the central area of Singapore covering 19 places of interest.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Bi-level GA and GIS for Multi-objective TSP Route Planning


    Contributors:
    Huang, Bo (author) / Yao, Li (author) / Raguraman, K. (author)

    Published in:

    Publication date :

    2006-04-01




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    Unknown





    Multi-objective route planning problem for cycle-tourists

    Zhu, Siying | Taylor & Francis Verlag | 2022


    Pareto Improver: Learning Improvement Heuristics for Multi-Objective Route Planning

    Zheng, Zhi / Yao, Shunyu / Li, Genghui et al. | IEEE | 2024



    Route and charging planning for electric vehicles: a multi-objective approach

    Cuchý, Marek / Jakob, Michal / Mrkos, Jan | Taylor & Francis Verlag | 2025