Investigating drivers’ injury level and detecting contributing factors that aggravate the damage level imposed on drivers and vehicles is a critical subject in the field of crash analysis. In this study, a comprehensive vehicle-by-vehicle crash data set is developed by integrating 5 years of data from California crash, vehicles involved, and road databases. The data set is used to model the severity of rear-end crashes for comparing three analytic techniques: multinomial logit, mixed multinomial logit, and support vector machine (SVM). The results of the crash severity models and the role of contributing factors to the severity outcome of rear-end crashes are extensively discussed. In terms of prediction performance, all three models yielded comparable results; although, the SVM performed slightly better than the other two methods. The results from this study will inform aspects of our driver safety education and design, either vehicle or roadway design, required to be improved to alleviate the probability of severe injuries.
Crash severity analysis of rear-end crashes in California using statistical and machine learning classification methods
Journal of Transportation Safety & Security ; 12 , 4 ; 522-546
2020-04-20
25 pages
Article (Journal)
Electronic Resource
English
Injury Severity in Multivehicle Rear-End Crashes
Transportation Research Record | 2001
|Injury Severity in Multivehicle Rear-End Crashes
Online Contents | 2001
|Injury Severity in Multivehicle Rear-End Crashes
British Library Conference Proceedings | 2001
|