For the suppression of the nonlinear panel flutter, an optimal active/passive hybrid control design is newly proposed using PZT actuators connected in series with an external voltage source and a passive resonant shunt circuit which consists of an inductor are resistor. The shunt circuit should be tuned correctly to suppress the flutter effectively with less control effort as compared to active control system. Otherwise, the actuator may cause the results to be worse than a purely active system. Therefore active control gain is simultaneously determined together with passive parameters such as resistance and inductance. The governing equations of the electromechanically coupled composite panel flutter are derived through extended Hamilton's principle and a finite element discretization is carried out. The adopted aerodynamic theory is based on the quasisteady first-order piston theory, and Von-Karman nonlinear strain-displacement relation is used. Modal equations are obtained through a modal reduction technique. Optimal control design is based on linear modal equations of motion and numerical simulations are based on nonlinear-coupled modal equations. Using the Newmark-beta method, suppression results are obtained in the time domain. The results demonstrate that the proposed method can effectively attenuate the flutter with less control effort as compared to a purely active control system.


    Access

    Access via TIB

    Check availability in my library


    Export, share and cite



    Title :

    Active/passive hybrid suppression method of nonlinear panel flutter using a piezoelectric material


    Contributors:
    Moon, S.H. (author) / Kim, S.J. (author)


    Publication date :

    2001


    Size :

    9 Seiten, 10 Quellen


    Type of media :

    Conference paper


    Type of material :

    Print


    Language :

    English





    AIAA-2001-1658 Active/Passive Hybrid Suppression Method of Nonlinear Panel Flutter Using a Piezoelectric Material

    Moon, S. / Kim, S. / American Institute of Aeronautics and Astronautics | British Library Conference Proceedings | 2001


    Active Suppression of Nonlinear Stall Flutter Using Piezoelectric Actuators

    Li, X. / Fleeter, S. / American Institute of Aeronautics and Astronautics et al. | British Library Conference Proceedings | 1996



    Passive Suppression of Panel Flutter Using a Nonlinear Energy Sink

    Jian Zhou / Minglong Xu / Wei Xia | DOAJ | 2020

    Free access