Carbon nanotube reinforced polymer composites may provide a unique option for the aviation industry due to their high strength-to-weight ratio and multifunctionality. Specifically their electrical conductivity and consequent shielding capabilities can be strongly enhanced by featuring vertically aligned nanotube arrays in the polymer composites. The authors report here a detailed study of the electrical transport mechanisms within aligned carbon nanotube reinforced polymer composites. The experimental part of the investigation relies on extensive use of both macroscopic and high spatial resolution experimental techniques by which they shed light on the factors dominating the electrical transport, namely the contact resistance which depends on the wetting properties of CNT–metal interface, and the resistance at point-junctions which scale with the size of interconnecting tubes. The modeling effort well describes the experimental observations and reveals the key parameters to achieve high nanocomposite intrinsic electrical conductivity and to reduce its interfacial contact resistance.


    Access

    Access via TIB

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    How to achieve high electrical conductivity in aligned carbon nanotube polymer composites


    Contributors:

    Published in:

    Carbon ; 64 ; 150-157


    Publication date :

    2013


    Size :

    8 Seiten, 37 Quellen




    Type of media :

    Article (Journal)


    Type of material :

    Print


    Language :

    English





    Effect of Carbon Nanotube Deformation on Electrical Properties of Carbon Nanotube Polymer Composites

    Zhu, Z.H. / Gong, S. / European Space Agency | British Library Conference Proceedings | 2014


    Electrical conductivity and carbon network in polymer composites

    Grivei,E. / Probst,N. | Automotive engineering | 2003