This paper describes the results of a numerical investigation of incorporating lightweight aggregate (LWA) in mass concrete structures. Numerical simulation was performed with ConcreteWorks software on three rectangular piers for normal weight concrete, internally cured concrete, sand–lightweight concrete, and all–lightweight concrete. Results show that temperature differences greater than 35°F may not necessarily introduce thermal cracking in mass concrete made with LWA. Maximum core temperatures and temperature differences increased with decreasing concrete density; however, the cracking risk of the mass concrete elements decreased as a greater quantity of LWA was used, regardless of element size. This trend occurred because other properties, such as coefficient of thermal expansion, creep, modulus of elasticity, tensile strength, and geometrical conditions, influenced the risk of thermal cracking. Additionally, the identification of the cross-section locations involved in measuring the critical temperature difference in a mass concrete structure are presented. The results of this work can be helpful in identifying critical stress locations in cross sections and assessing the cracking risk for mass concrete structures. A temperature and stress analysis is recommended before mass concrete construction involving LWA is begun.


    Access

    Download

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Risk of Thermal Cracking from Use of Lightweight Aggregate in Mass Concrete


    Additional title:

    Transportation Research Record: Journal of the Transportation Research Board


    Contributors:


    Publication date :

    2017-01-01




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English




    Structural Lightweight Concrete Containing Recycled Lightweight Concrete Aggregate

    Wongkvanklom, Athika / Posi, Patcharapol / Khotsopha, Banlang et al. | Online Contents | 2018


    Structural Lightweight Concrete Containing Recycled Lightweight Concrete Aggregate

    Wongkvanklom, Athika / Posi, Patcharapol / Khotsopha, Banlang et al. | Springer Verlag | 2017


    The lightweight aggregate concrete bridge at redesdale

    Higgins, G. E. / Loe, J. A. / Howells, H. | TIBKAT | 1983


    Fabricated recycled aggregate lightweight concrete prefabricated stair

    LI DUN / ZHANG HUI / WANG HUI et al. | European Patent Office | 2023

    Free access