The investigation of vehicle defects, which is generally led by the National Highway Traffic Safety Administration (NHTSA) in the U.S., is critical to the continued trust of the general public in the safety of vehicles. NHTSA routinely receives millions of reports of potential defects, complaints, recalls, and manufacturer communications, which may provide evidence of a new vehicle defect. However, the large quantity and text-based communication make efficiently identifying defect trends difficult for analysts. To accelerate the investigation of defect reports, we introduce a natural language processing (NLP) application that identifies key topics and similar defect reports to assist analysts and investigators. Further, our application is built to provide users with a web interface for interacting with the NLP models. The integration of NLP with current NHTSA datasets provides a method for quickly identifying defect trends in large text-based datasets. To demonstrate the effectiveness of our method, we apply our approach to two publicly available NHTSA datasets, namely the Technical Service Bulletins and Recalls Dataset.


    Access

    Download

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    SmarTxT: A Natural Language Processing Approach for Efficient Vehicle Defect Investigation


    Additional title:

    Transportation Research Record: Journal of the Transportation Research Board


    Contributors:


    Publication date :

    2022-10-10




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English




    APPLICATION OF NATURAL LANGUAGE PROCESSING FOR AIRCRAFT DEFECT TRACKING IN MAINTENANCE OPERATIONS

    Scott, M.J. / Kirkpatrick, O. / Verhagen, W. et al. | DataCite | 2024



    VEHICLE LANGUAGE PROCESSING

    SCARIA LISA / NARAYANAN PRAVEEN / CHARETTE FRANCOIS et al. | European Patent Office | 2020

    Free access

    VEHICLE LANGUAGE PROCESSING

    NARAYANAN PRAVEEN / SCARIA LISA / BURKE RYAN et al. | European Patent Office | 2020

    Free access