Accurate traffic prediction is critical for industry practitioners and researchers in intervening and dredging future traffic in advance to avoid traffic congestion. Considering that most prediction models fail to effectively capture the complex nonlinearity of traffic data and thus cannot obtain satisfactory prediction results, we propose a novel deep-learning architecture for traffic flow prediction, called AC-BLSTM (attention-based convolutional bidirectional long short-term memory). The proposed model captures traffic information through multilayer network architectures composed of convolutional bidirectional long short-term memory (conv-BiLSTM) network and attention mechanism. The spatiotemporal features of traffic flow are extracted by convolutional neural network (CNN) and bidirectional long short-term memory (BiLSTM) network. Then attention mechanism combines the outputs of CNN and BiLSTM to assign corresponding weights to the features extracted at different times. In addition, we employ a parallel sub-module structure to model three temporal properties of traffic flow, that is, weekly, daily, and recent dependencies. Finally, the results of these three parts are fused to predict the traffic flow values through the fully connected (FC) layers. Experiment results using a real-world urban road traffic dataset demonstrate that compared with other competing models, the proposed model has better prediction performance.


    Access

    Download

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Urban Road Traffic Flow Prediction with Attention-Based Convolutional Bidirectional Long Short-Term Memory Networks


    Additional title:

    Transportation Research Record: Journal of the Transportation Research Board


    Contributors:
    Liu, Zhiquan (author) / Hu, Yao (author) / Ding, Xiangying (author)


    Publication date :

    2023-02-02




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English