Hotspot identification is an important step in the highway safety management process. Errors in hotspot identification (HSID) may result in an inefficient use of limited resources for safety improvements. The empirical Bayesian (EB) HSID has been widely applied as an effective approach in identifying hotspots. However, there are some limitations with the EB approach. It assumes that the parameter estimates of the safety performance function (SPF) are correct without any uncertainty, and does not consider temporal instability in crashes, which has been reported in recent studies. The Bayesian hierarchical model is an emerging technique that addresses the limitations of the EB method. Thus, the objective of this study is to compare the performance of the standard EB method and the Bayesian hierarchical model in identifying hotspots. Three methods (crash rate, EB, and the Bayesian hierarchical model) were applied to identify risky intersections with different significance levels. Four evaluation tests (site consistency, method consistency, total rank differences, and Poisson mean differences tests) were conducted to assess the performance of these three methods. The testing results suggest that: (1) the Bayesian hierarchical model outperforms the crash rate and the EB methods in most cases, and the Bayesian hierarchical model improves the accuracy of HSID significantly; and (2) hotspots identified with crash rates are generally unreliable. This is significant for roadway agencies and practitioners trying to accurately rank sites in the roadway network to effectively manage safety investments. Roadway agencies and practitioners are encouraged to consider the Bayesian hierarchical model in identifying hotspots.


    Access

    Download

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Comparative Analysis of Empirical Bayes and Bayesian Hierarchical Models in Hotspot Identification


    Additional title:

    Transportation Research Record: Journal of the Transportation Research Board


    Contributors:
    Guo, Xiaoyu (author) / Wu, Lingtao (author) / Zou, Yajie (author) / Fawcett, Lee (author)


    Publication date :

    2019-06-06




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English



    Developing a Clustering-Based Empirical Bayes Analysis Method for Hotspot Identification

    Yajie Zou / Xinzhi Zhong / John Ash et al. | DOAJ | 2017

    Free access

    A comparative analysis of hotspot identification methods

    Méndez, Álvaro Gómez | Online Contents | 2010


    Bayesian multiple testing procedures for hotspot identification

    Miranda-Moreno, Luis F. | Online Contents | 2007


    A novel Bayesian hierarchical model for road safety hotspot prediction

    Fawcett, Lee / Thorpe, Neil / Matthews, Joseph et al. | FID move | 2016

    Free access