Cracks in concrete bridge decks provide easy access for water and deicing chemicals that shorten the life of the deck, and field surveys show that the problem has become progressively more severe since at least the 1980s. A two-phase, 10-year Pooled Fund study to minimize cracking in bridge decks is now under way. Twenty bridge decks have been constructed in the program to date. Comparison with conventional decks shows that the techniques embodied in low-cracking, high-performance concrete (LC-HPC) bridge deck specifications have been highly successful in reducing cracking in bridge decks. The results also show that high-slump high-strength concretes result in greater cracking in bridge decks than low-slump, moderate-strength concretes and that concrete temperature control and early application of curing counteract the negative effects of casting concrete under high-temperature conditions. Early owner and contractor buy-in is needed for successful LC-HPC bridge deck construction, and top performance requires the adherence to all aspects of the specifications.


    Access

    Download

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Low-Cracking, High-Performance Concrete Bridge Decks


    Subtitle :

    Case Studies over First 6 Years


    Additional title:

    Transportation Research Record: Journal of the Transportation Research Board


    Contributors:


    Publication date :

    2010-01-01




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English



    Transverse Cracking in Concrete Bridge Decks

    French, Catherine | Online Contents | 1999


    Transverse Cracking in Concrete Bridge Decks

    French, Catherine / Eppers, Laurice / Le, Quoc et al. | Transportation Research Record | 1999