The state of the practice in black spot identification uses safety performance functions based on total crash counts to identify high-risk crash sites. This paper postulates that total crash count is a result of multiple distinct risk-generating processes (RGPs), including geometric characteristics of the road, spatial features of the surrounding environment, and driver behavior factors. However, these multiple sources are ignored in current modeling methodologies that try to explain or predict crash frequencies across sites. Instead, current practice uses models that imply that a single RGP exists. This misspecification may lead to correlation of crashes with incorrect sources of contributing factors (e.g., concluding a crash is predominately caused by a geometric feature when the cause is a behavioral issue), which may ultimately lead to inefficient use of public funds and misidentification of true black spots. This study proposes a latent class model consistent with a multiple risk process theory and investigates the influence this model has on correctly identifying crash black spots. The paper presents the theoretical and corresponding methodological approach in which a Bayesian latent class model is estimated with the assumption that crashes arise from two distinct RGPs, including engineering and unobserved spatial factors. The methodology was applied to state-controlled roads in Queensland, Australia. The results were compared with an empirical Bayesian negative binomial (EB-NB) model. A comparison of goodness-of-fit measures illustrated superiority of the proposed model compared with the NB model. The detection of black spots was improved compared with the EB-NB model. In addition, modeling crashes as the result of two fundamentally separate RGPs reveals more detailed information about unobserved crash causes.


    Access

    Download

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Bayesian Latent Class Safety Performance Function for Identifying Motor Vehicle Crash Black Spots


    Additional title:

    Transportation Research Record: Journal of the Transportation Research Board


    Contributors:


    Publication date :

    2016-01-01




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English



    Identifying Large Truck Hot Spots Using Crash Counts and PDOEs

    Vadlamani, S. / Chen, E. / Ahn, S. et al. | British Library Online Contents | 2011


    Empirical Evaluation of Alternative Approaches in Identifying Crash Hot Spots

    Huang, Helai / Chin, Hoong Chor / Haque, Md. Mazharul | Transportation Research Record | 2009


    Identifying Large Truck Hot Spots Using Crash Counts and PDOEs

    Vadlamani, Sravani | Online Contents | 2011


    Future Motor Vehicle Safety Research Needs: Crash Avoidance

    Rogers, R. | British Library Conference Proceedings | 1996


    Future Motor Vehicle Safety Research Needs: Crash Avoidance

    Hyden, C. | British Library Conference Proceedings | 1996