This paper presents a rational approach for the performance-based design of bituminous wearing surfacings on orthogonally anisotropic steel bridges. The behavior of bituminous surfacings on steel orthotropic decks under heavy truck traffic and environmental conditions is highly complex. Both the geometry of the structure and the high flexibility of metallic plates make the deformations and stresses severe in steel bridge surfacings. In particular, the repeated loading makes the fatigue strength an important parameter for the design of such bituminous wearing courses. In addition, these specific surfacings must have durability over the expected temperature range, and they must be resistant to thermal cracking at low temperatures and to rutting at high temperatures. The technical studies that were conducted in parallel with the construction of the Millau Viaduct (France)–-the world's highest bridge–-have provided in particular the opportunity for progress in the development of appropriate laboratory testing equipment and of an original polymer-modified surfacing. A comprehensive research program, including both a large laboratory testing campaign and a finite element parametric study, was performed to develop a useful tool for the design of plate surfacings.


    Access

    Download

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Design of a Specific Bituminous Surfacing for the World's Highest Orthotropic Steel Deck Bridge


    Subtitle :

    France's Millau Viaduct


    Additional title:

    Transportation Research Record: Journal of the Transportation Research Board


    Contributors:


    Publication date :

    2005-01-01




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English