Traffic volumes are a basic unit of measurement for understanding the transportation system. As investments in bicycle infrastructure are made, similar measures are necessary for understanding this non-motorized mode of travel. Methods for estimating annual average daily bicycle traffic (AADBT) are still developing, but generally employ techniques used in the motorized traffic monitoring field whereby data from permanent counters are used to construct expansion factors that are then applied to short-duration counts. This approach requires a network of permanent counters and knowledge about how to group factors into appropriate categories based on patterns observed in both the short-duration and permanent counter data. The methods presented in this paper advance a new approach to estimating AADBT solely using short-duration counts. The Seasonal Adjustment Regression Model uses statistical models that relate the daily bicycle volume to daily conditions and weather variables at a given count location. These models are then used to predict daily volumes for the remaining days of the year. To verify this approach and determine the resulting error, levels of available short-duration counts using varying amounts of permanent count data were simulated. This method was then applied to short-duration bicycle counts from Eugene, Oregon. With sufficient short-duration count data, this method can produce AADBT estimates with minimal error and without requiring a network of permanent counters. This approach also circumvents the need to determine which expansion factors should be applied to different short-term count locations by using statistical models in place of expansion factors.


    Access

    Download

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Estimating Annual Average Daily Bicycle Traffic without Permanent Counter Stations


    Additional title:

    Transportation Research Record: Journal of the Transportation Research Board


    Contributors:


    Publication date :

    2018-10-10




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English



    Estimation of Annual Average Daily Bicycle Traffic with Adjustment Factors

    Esawey, Mohamed El | Transportation Research Record | 2014


    Estimating Annual Average Daily Bicyclists

    Nordback, Krista / Marshall, Wesley E. / Janson, Bruce N. et al. | Transportation Research Record | 2013



    Network-Wide Estimation of Average Daily Bicycle Traffic Based on Crowdsourced GPS Data and Permanent Counters

    Richter, Emely / Raudszus, Joscha / Lißner, Sven et al. | Springer Verlag | 2025

    Free access