The purpose of Probabilistic Seismic Hazard Assessment (PSHA) at a construction site is to provide the engineers with a probabilistic estimate of ground-motion level that could be equaled or exceeded at least once in the structure’s design lifetime. A certainty on the predicted ground-motion allows the engineers to confidently optimize structural design and mitigate the risk of extensive damage, or in worst case, a collapse. It is therefore in interest of engineering, insurance, disaster mitigation, and security of society at large, to reduce uncertainties in prediction of design ground-motion levels. In this study, I am concerned with quantifying and reducing the prediction uncertainty of regression-based Ground-Motion Prediction Equations (GMPEs). Essentially, GMPEs are regressed best-fit formulae relating event, path, and site parameters (predictor variables) to observed ground-motion values at the site (prediction variable). GMPEs are characterized by a parametric median (μ) and a non-parametric variance (σ) of prediction.…


    Access

    Access via TIB

    Check availability in my library


    Export, share and cite



    Title :

    Quantification of uncertainties in seismic ground-motion prediction


    Additional title:

    Quantifizierung von Unsicherheiten bei der seismischen Bodenbewegungsvorhersage


    Contributors:

    Publication date :

    2018


    Size :

    1 Online-Ressource (xii, 101 Seiten, 14738 KB)


    Remarks:

    Illustrationen, Diagramme, Karten
    kumulative Dissertation


    Type of media :

    Theses


    Type of material :

    Electronic Resource


    Language :

    English



    Classification :

    DDC:    551.22
    BKL:    58.56 Lärmschutz, Erschütterungsdämpfung / 38.38 Seismologie



    Quantification of uncertainties in seismic ground-motion prediction

    Kotha, Sreeram Reddy / Universität Potsdam | TIBKAT | 2018


    UNCERTAINTIES QUANTIFICATION OF CFD-BASED FLUTTER PREDICTION

    Righi, Marcello / Greco, Pietro / Ronch, Andrea Da | TIBKAT | 2021


    Uncertainties Quantification of CFD-Based Flutter Prediction

    Righi, Marcello / Greco, Pietro / Da Ronch, Andrea | AIAA | 2021


    Uncertainties Identification and Quantification

    Büche, Dirk / Klostermann, Sönke / Schmelzer, Martin | Springer Verlag | 2018


    Rail Ground-Borne Noise and Vibration Prediction Uncertainties

    Weber, C. / Karantonis, P. | Springer Verlag | 2018