A new anti-lock braking system (ABS) for motorcycles is proposed in this study. It functions by processing the speed of the motorcycle tire in contact with the ground relative to the speed of the motorcycle itself and by calculating the slip ratio (λ) of the tire slipping on the ground while braking, and reducing it to a minimum which leads to increased controllability of the motorcycle and reduction of the stopping distance, especially when the ground is slippery. The design of the new ABS and its pilot model comprises mechanical parts, hydraulics, and an electrical circuit. The pilot model providing the testing facility for the brake system functioning in a fixed place is in fact a simulation of the movement of a motorcycle on the ground. When the electric motor is turned on, and its flywheel reaches the desired speed, a controllable load is applied to the flywheel by the motorcycle tire which is a modelling of the weight of the motorcycle and the rider. Then, by turning the electric motor off, the throttle is released and the brake is activated. In this state, without the tire being locked, it will stop within a shorter time and distance than the non-ABS, because the new system keeps the tire in the threshold state of slipping relative to the ground, which is the maximum friction coefficient and the maximum brake force. The results show that the stoppage time for the new ABS is about 40% less than that is the non-ABS type.


    Access

    Download


    Export, share and cite



    Title :

    Design of a New Anti-Lock Braking System for Motorcycles


    Contributors:
    M. Shamsmohammadi (author) / M Soheili (author) / S. Nasiri (author) / M. J. Rajabirad (author) / M. Torabi (author) / N. Javam (author)


    Publication date :

    2011



    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    Unknown


    Keywords :


    An anti-lock braking system for motorcycles

    Cart, J. | Tema Archive | 1985


    An anti-lock braking system for motorcycles

    Cart,J. / Lucas Girling,GB | Automotive engineering | 1985


    eABS: Regenerative Anti-Lock Braking for Electric Motorcycles

    Robinson, John / Singh, Tarunraj | SAE Technical Papers | 2013


    eABS: Regenerative Anti-Lock Braking for Electric Motorcycles

    Robinson, J. / Singh, T. / Society of Automotive Engineers | British Library Conference Proceedings | 2013


    Anti lock braking and vehicle stability control for motorcycles - why or why not?

    Gail,J. / Funke,J. / Seiniger,P. et al. | Automotive engineering | 2009