The invention discloses a long-time-sequence traffic flow prediction method based on a graph convolution-Informer model, and belongs to the technical field of long-time-sequence traffic flow prediction. The technical problem to be solved is to provide an improvement of the long-time-sequence traffic flow prediction method based on the graph convolution-Informer model. According to the technical scheme, the method comprises the following steps that speed information of all passing vehicles at expressway stations and provincial and arterial highway intermodulation stations is collected in unit time, and a traffic flow time sequence information data set is established after data preprocessing; a site network structure topological graph is established according to the relative geographical location information of the expressway stations and the provincial and arterial highway intermodulation stations; a two-layer graph convolutional neural network model structure is constructed, a road network topological structure and traffic flow time sequence information are coded, and spatial dependency feature information of data is learned; coding information obtained through image convolution is input into an Informer layer for training, and data long-time-sequence dependence feature information is learned. The method is applied to traffic flow prediction.

    本发明一种基于图卷积‑Informer模型的长时序交通流量预测方法,属于长时序交通流量预测技术领域;所要解决的技术问题为:提供一种基于图卷积‑Informer模型的长时序交通流量预测方法的改进;解决上述技术问题采用的技术方案为:包括如下步骤:采集单位时间内高速公路站点和省干线公路交调站点的所有通过车辆的速度信息,并在数据预处理后建立交通流量时序信息数据集;根据高速公路站点和省干线公路交调站点的相对地理位置信息建立站点网络结构拓扑图;构建两层图卷积神经网络模型结构,对路网拓扑结构与交通流量时序信息进行编码并学习数据的空间依赖特征信息;将图卷积得到的编码信息输入Informer层进行训练并学习数据长时序依赖特征信息;本发明应用于交通流量预测。


    Access

    Download


    Export, share and cite



    Title :

    Long-time-sequence traffic flow prediction method based on graph convolution-Informer model


    Additional title:

    一种基于图卷积-Informer模型的长时序交通流量预测方法


    Contributors:
    GUO ZIQIANG (author) / CHENG BAOXI (author) / YANG XIAOLEI (author) / XUE SHILUN (author) / ZHANG TING (author) / ZHANG GANG (author)

    Publication date :

    2021-10-08


    Type of media :

    Patent


    Type of material :

    Electronic Resource


    Language :

    Chinese


    Classification :

    IPC:    G06Q Datenverarbeitungssysteme oder -verfahren, besonders angepasst an verwaltungstechnische, geschäftliche, finanzielle oder betriebswirtschaftliche Zwecke, sowie an geschäftsbezogene Überwachungs- oder Voraussagezwecke , DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES / G06F ELECTRIC DIGITAL DATA PROCESSING , Elektrische digitale Datenverarbeitung / G06N COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS , Rechnersysteme, basierend auf spezifischen Rechenmodellen / G08G Anlagen zur Steuerung, Regelung oder Überwachung des Verkehrs , TRAFFIC CONTROL SYSTEMS



    Ship traffic flow long sequence space-time prediction method based on ST-Informer

    JIANG BAODE / LUO HAIYAN / JIANG YING | European Patent Office | 2023

    Free access


    Dynamic graph convolution long-term traffic flow prediction method based on time perception

    ZUO KAIZHONG / LIAO TINGKANG / WANG CHEN et al. | European Patent Office | 2024

    Free access

    Traffic Flow Prediction Based on Dynamic Time Slot Graph Convolution

    Chen, Hongwei / Wang, Han / Chen, Zexi | Transportation Research Record | 2025


    Traffic flow prediction method based on double graph convolution

    HUI BO / GONG JING / ZHANG LIZONG et al. | European Patent Office | 2024

    Free access