The invention discloses a dynamic graph convolution long-term traffic flow prediction method based on time perception. The method comprises the following steps: firstly, capturing traffic flow by using an attention-driven dynamic adaptive graph convolution network to obtain potential spatial dependence; then, time perception is combined with a multi-view time-dependent encoder to extract time correlation of a periodic mode, and the time perception capability of the model is enhanced through a time perception matrix; and finally, a time-aware dynamic graph convolutional network model for long-term traffic flow prediction is established. According to the method, the perception capability of time information is enhanced, the prediction result is more accurate, more powerful and more accurate reference can be provided for management of traffic decision makers, and the traffic jam phenomenon is greatly relieved.

    本发明公开了一种基于时间感知的动态图卷积长期交通流预测方法,包括首先利用注意力驱动的动态自适应图卷积网络来捕交通流获潜在的空间依赖;接着利用时间感知联合多视图时间依赖编码器,来提取周期模式的时间相关性,还通过时间感知矩阵增强了模型的时间感知能力。最终建立一种面向长期交通流预测的时间感知动态图卷积网络模型。该方法增强了对于时间信息的感知能力,预测结果更加精确,能够为交通决策者的管理提供更有力和更准确的参考,大大缓解了交通拥堵现象。


    Access

    Download


    Export, share and cite



    Title :

    Dynamic graph convolution long-term traffic flow prediction method based on time perception


    Additional title:

    基于时间感知的动态图卷积长期交通流预测方法


    Contributors:
    ZUO KAIZHONG (author) / LIAO TINGKANG (author) / WANG CHEN (author) / CHEN ZHANGYI (author) / HU PENG (author) / LI WENJIE (author)

    Publication date :

    2024-10-08


    Type of media :

    Patent


    Type of material :

    Electronic Resource


    Language :

    Chinese


    Classification :

    IPC:    G08G Anlagen zur Steuerung, Regelung oder Überwachung des Verkehrs , TRAFFIC CONTROL SYSTEMS / G06N COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS , Rechnersysteme, basierend auf spezifischen Rechenmodellen



    Traffic Flow Prediction Based on Dynamic Time Slot Graph Convolution

    Chen, Hongwei / Wang, Han / Chen, Zexi | Transportation Research Record | 2025


    Traffic prediction method based on dynamic graph convolution

    FAN JIN / WENG WENCHAO / TIAN HAO et al. | European Patent Office | 2023

    Free access

    Long-time-sequence traffic flow prediction method based on graph convolution-Informer model

    GUO ZIQIANG / CHENG BAOXI / YANG XIAOLEI et al. | European Patent Office | 2021

    Free access

    Dynamic graph convolution traffic speed prediction method

    LIU QILIANG / YUAN HAOTAO / YANG LIU et al. | European Patent Office | 2020

    Free access

    Traffic flow prediction method based on dynamic sparse graph convolution GRU

    ZHANG LINLIANG / YIN JIALI / LI SHUO et al. | European Patent Office | 2025

    Free access