Es wird ein Verfahren zum Erzeugen eines Trainingsdatensatzes zum Trainieren eines Künstlichen-Intelligenz-Moduls, KI-Moduls (1), zur Verfügung gestellt. Das Verfahren sieht zunächst ein Bereitstellen einer Bildsequenz (5), in der eine Umgebung (6) eines Roboters erfasst ist, vor. Dann erfolgt ein Bestimmen von wenigstens einer Trajektorie (14a-14e), die in der erfassten Umgebung (6) des Roboters anordbar ist. Des Weiteren ist ein Generieren von wenigstens einer zukünftigen Bildfolge vorgesehen, die sich auf einen in Bezug auf einen Sequenzendzeitpunkt (t0) in der Zukunft liegenden Zeitabschnitt (t0+n) erstreckt und basierend auf der wenigstens einen bestimmten Trajektorie (14a-14e) eine Prädiktion von Bildern für den Fall umfasst, dass der bestimmten Trajektorie (14a-14e) während des in der Zukunft liegenden Zeitabschnitts (t0+n) gefolgt würde. Es erfolgt ein Bewerten von wenigstens einem Teilabschnitt der in der generierten Bildfolge enthaltenen bestimmten Trajektorie (14a-14e) als positiv, wenn eine durch Folgen der Trajektorie (14a-14e) prädizierte Bewegung einer gültigen Bewegungssituation entspricht, oder als negativ, wenn die durch Folgen der Trajektorie (14a-14e) prädizierte Bewegung einer ungültigen Bewegungssituation entspricht, und ein Kombinieren der generierten zukünftigen Bildfolge mit der dieser zugeordneten Bewertung der Trajektorie (14a-14e) zum Erzeugen eines Trainingsdatensatzes (2) für das KI-Modul (1). Dadurch kann das KI-Modul (1) durch einen Fahrsimulator trainiert werden, der auf der aufgenommenen und damit realistischen Bildsequenz (5) in Kombination mit einer mit vergleichsweise geringem Rechenaufwand erreichbaren Prädiktion basiert.
A method for generating a training data set for training an artificial intelligence (AI) module. An image sequence is provided in which surroundings of a robot are recorded. A trajectory in the recorded surroundings is determined. At least one future image sequence is generated which extends to a time segment in the future, and, based on the at least one determined trajectory, encompasses a prediction of images for the event that the determined trajectory was followed during the time segment in the future. At least one sub-section of the determined trajectory in the generated image sequence is assessed as positive or as negative when a movement predicted by following the trajectory corresponds to a valid movement situation, or as an invalid movement situation, respectively. The generated future image sequence with the assessment assigned thereto of the trajectory are combined for generating a training data set for the AI module.
Verfahren zum Erzeugen eines Trainingsdatensatzes zum Trainieren eines Künstlichen-Intelligenz-Moduls für eine Steuervorrichtung eines Roboters
2019-09-19
Patent
Electronic Resource
German
Verfahren zum Trainieren eines zentralen Künstlichen-Intelligenz-Moduls
European Patent Office | 2019
|European Patent Office | 2020
|Verfahren zum Trainieren eines Künstlichen-Intelligenz-Modells
European Patent Office | 2023
|Steuervorrichtung und Verfahren zum Erzeugen eines adaptierbaren künstlichen Horizonts
European Patent Office | 2025
|Verfahren zum Trainieren eines künstlichen neuronalen Netzes eines Fahrermodells
European Patent Office | 2024
|