Techniques for performing deconvolution operations on data structures representing condensed sensor data are disclosed herein. Autonomous vehicle sensors can capture data in an environment that may include one or more objects. The sensor data may be processed by a convolutional neural network to generate condensed sensor data. The condensed sensor data may be processed by one or more deconvolution layers using a machine-learned upsampling transformation to generate an output data structure for improved object detection, classification, and/or other processing operations.


    Access

    Download


    Export, share and cite



    Title :

    Learned deconvolutional upsampling decoding layer


    Contributors:

    Publication date :

    2024-12-24


    Type of media :

    Patent


    Type of material :

    Electronic Resource


    Language :

    English


    Classification :

    IPC:    G06V / B60W CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION , Gemeinsame Steuerung oder Regelung von Fahrzeug-Unteraggregaten verschiedenen Typs oder verschiedener Funktion / G06N COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS , Rechnersysteme, basierend auf spezifischen Rechenmodellen



    Deconvolutional Speckle Reducing Anisotropic Diffusion

    Acton, S. T. | British Library Conference Proceedings | 2005



    Deconvolutional networks for point-cloud vehicle detection and tracking in driving scenarios

    Vaquero Gómez, Víctor / del Pino Bastida, Iván / Moreno-Noguer, Francesc et al. | BASE | 2017

    Free access

    Deconvolutional networks for point-cloud vehicle detection and tracking in driving scenarios

    Vaquero, Victor / Pino, Iván del / Moreno-Noguer, Francesc et al. | BASE | 2017

    Free access

    Improving sub-pixel correspondence through upsampling

    Xu, L. / Jia, J. / Kang, S. B. | British Library Online Contents | 2012