Techniques for performing deconvolution operations on data structures representing condensed sensor data are disclosed herein. Autonomous vehicle sensors can capture data in an environment that may include one or more objects. The sensor data may be processed by a convolutional neural network to generate condensed sensor data. The condensed sensor data may be processed by one or more deconvolution layers using a machine-learned upsampling transformation to generate an output data structure for improved object detection, classification, and/or other processing operations.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Learned deconvolutional upsampling decoding layer


    Beteiligte:

    Erscheinungsdatum :

    24.12.2024


    Medientyp :

    Patent


    Format :

    Elektronische Ressource


    Sprache :

    Englisch


    Klassifikation :

    IPC:    G06V / G06N COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS , Rechnersysteme, basierend auf spezifischen Rechenmodellen / B60W CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION , Gemeinsame Steuerung oder Regelung von Fahrzeug-Unteraggregaten verschiedenen Typs oder verschiedener Funktion



    Deconvolutional Speckle Reducing Anisotropic Diffusion

    Acton, S. T. | British Library Conference Proceedings | 2005



    Deconvolutional networks for point-cloud vehicle detection and tracking in driving scenarios

    Vaquero Gómez, Víctor / del Pino Bastida, Iván / Moreno-Noguer, Francesc et al. | BASE | 2017

    Freier Zugriff

    Deconvolutional networks for point-cloud vehicle detection and tracking in driving scenarios

    Vaquero, Victor / Pino, Iván del / Moreno-Noguer, Francesc et al. | BASE | 2017

    Freier Zugriff

    Improving sub-pixel correspondence through upsampling

    Xu, L. / Jia, J. / Kang, S. B. | British Library Online Contents | 2012