In this work, we analyze the end-to-end latency measured in a client-server application that emulates the traffic requirements for the Unmanned Aerial Vehicle (UAV)’s Command and Control (C2) link. The connectivity is provided by two real LTE-A networks to a client attached to a flying UAV. Measurements are performed at 4 different heights: ground level, 15 m, 40 m and 100 m. In single operator scenarios, the reliability measured at the target latency, 50 ms, was between 99.6 % and 97.6 % in downlink, and 91.3% and 99.4% in uplink. These results are below the 99.9 % target reliability defined for UAVs and they show that several consecutive packets can be missed when the radio link connectivity degrades, leading to high (> 1 s) values for the 99.9%-ile of latency. To circumvent this, a dualoperator hybrid access scheme is proposed in this paper. The results show that the hybrid access strategy managed to reach the performance requirements in most cases. The solution shows potential to enable C2 over cellular networks, without requiring optimization or modifications in the network.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Improving Drone's Command and Control Link Reliability through Dual-Network Connectivity


    Contributors:


    Publication date :

    2019-04-01


    Size :

    1689837 byte





    Type of media :

    Conference paper


    Type of material :

    Electronic Resource


    Language :

    English



    Verification of Standardized Rel-15 Requirements for Drone’s Command-and-Control Link Reliability

    Homayouni, Samira / Berisha, Taulant / Paier, Mario et al. | IEEE | 2023


    DRONE'S LANDING SYSTEM

    European Patent Office | 2018

    Free access

    DRONE'S LANDING SYSTEM

    LEE SEON HO | European Patent Office | 2018

    Free access

    DRONE'S UNMANNED CHARGING STATION AND CONTROL METHOD THEREOF

    KIM JAE OH / LEE JONG KYEONG | European Patent Office | 2022

    Free access

    A DRONE'S LANDING DEVICE

    JEONG SEONG HOAN / PARK SEONG HYEON | European Patent Office | 2024

    Free access