Conventionally, two stages are used for DC to AC voltage conversion. In the first stage, the boost converter provides voltage gain, and the H-bridge inverter provides the DC-AC conversion in the second stage. The two-stage conversion process can be reduced to a single-stage with the help of a new breed of inverter topology, namely differential mode inverter (DMI). For the same power rating, the single-stage DMI increases the energy density and compactness of the system compared to the two-stage. In DMI, using a specific DC-DC converter module, a higher voltage gain can be obtained. In this paper, a DC-DC Zeta converter based DMI is presented. The analysis of single-phase differential mode Zeta inverter (DMZI) is carried out with two different modulation schemes, namely Continuous mode modulation scheme (CMS) and Discontinuous mode modulation scheme (DMS). The steady-state analysis is performed to investigate the eight-order system. Generalized analytical expressions are derived, which are applicable to both modulation schemes. Also, a comparative analysis is presented to compare both modulation schemes by pointing out the requirement of maximum duty cycle, the voltage stress on the semiconductor switches, and system losses. Finally, MATLAB/SIMULINK results are provided to verify the analytical expressions.
Performance Evaluation of Differential Mode Zeta Inverter using Various Modulation Schemes
2022-08-04
863691 byte
Conference paper
Electronic Resource
English
Analysis of Modulation Schemes for Balanced Inverter
IEEE | 2020
|Dual-Mode Index Modulation Schemes for CPSC-MIMO Systems
IEEE | 2018
|