Accurate detection of lane and road markings is a task of great importance for intelligent vehicles. In existing approaches, the detection accuracy often degrades with the increasing distance. This is due to the fact that distant lane and road markings occupy a small number of pixels in the image, and scales of lane and road markings are inconsistent at various distances and perspectives. The Inverse Perspective Mapping (IPM) can be used to eliminate the perspective distortion, but the inherent interpolation can lead to artifacts especially around distant lane and road markings and thus has a negative impact on the accuracy of lane marking detection and segmentation. To solve this problem, we adopt the Encoder-Decoder architecture in Fully Convolutional Networks and leverage the idea of Spatial Transformer Networks to introduce a novel semantic segmentation neural network. This approach decomposes the IPM process into multiple consecutive differentiable homography transform layers, which are called “Perspective Transformer Layers Furthermore, the interpolated feature map is refined by subsequent convolutional layers” thus reducing the artifacts and improving the accuracy. The effectiveness of the proposed method in lane marking detection is validated on two public datasets: TuSimple and ApolloScape.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Detecting Lane and Road Markings at A Distance with Perspective Transformer Layers


    Contributors:
    Yu, Zhuoping (author) / Ren, Xiaozhou (author) / Huang, Yuyao (author) / Tian, Wei (author) / Zhao, Junqiao (author)


    Publication date :

    2020-09-20


    Size :

    2092326 byte




    Type of media :

    Conference paper


    Type of material :

    Electronic Resource


    Language :

    English



    Ridgeness for detecting lane markings

    Lopez, A. / Serrat, J. / Saludes, J. et al. | Tema Archive | 2005


    Ridgeness for Detecting Lane Markings

    Lopez, A. / Serrat, J. / Saludes, J. et al. | British Library Conference Proceedings | 2005


    METHOD FOR DETECTING LANE MARKINGS

    PITTNER MAXIMILIAN / CONDURACHE ALEXANDRU PAUL / JANAI JOEL | European Patent Office | 2024

    Free access

    Camera calibration from road lane markings

    Fung, G.S.K. / Yung, N.H.C. / Pang, G.K.H. | Tema Archive | 2003


    Segmentation to determine lane markings and road signs

    TSAI YI-HSUAN / SOHN KIHYUK / LIU BUYU et al. | European Patent Office | 2023

    Free access