There is rising interest in differentiable rendering, which allows explicitly modeling geometric priors and constraints in optimization pipelines using first-order methods such as backpropagation. Incorporating such domain knowledge can lead to deep neural networks that are trained more robustly and with limited data, as well as the capability to solve ill-posed inverse problems. Existing efforts in differentiable rendering have focused on imagery from electro-optical sensors, particularly conventional RGB-imagery. In this article, we propose an approach for differentiable rendering of synthetic aperture radar (SAR) imagery, which combines methods from 3-D computer graphics with neural rendering. We demonstrate the approach on the inverse graphics problem of 3-D object reconstruction from limited SAR imagery using high-fidelity simulated SAR data.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Differentiable Rendering for Synthetic Aperture Radar Imagery


    Contributors:


    Publication date :

    2024-02-01


    Size :

    2886440 byte




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English



    Analysis of synthetic aperture radar imagery

    Blanchard, B. J. | NTRS | 1977



    Evaluation of Compressed Synthetic Aperture Radar Imagery

    Kuperman, G. G. / Penrod, T. D. / IEEE; Dayton Section et al. | British Library Conference Proceedings | 1994


    Evaluation of compressed synthetic aperture radar imagery

    Kuperman, G.G. / Penrod, T.D. | IEEE | 1994


    Persistence modeling of angularly dependent synthetic aperture radar imagery

    Papson, S. / Narayanan, R.M. | British Library Online Contents | 2008