There is rising interest in differentiable rendering, which allows explicitly modeling geometric priors and constraints in optimization pipelines using first-order methods such as backpropagation. Incorporating such domain knowledge can lead to deep neural networks that are trained more robustly and with limited data, as well as the capability to solve ill-posed inverse problems. Existing efforts in differentiable rendering have focused on imagery from electro-optical sensors, particularly conventional RGB-imagery. In this article, we propose an approach for differentiable rendering of synthetic aperture radar (SAR) imagery, which combines methods from 3-D computer graphics with neural rendering. We demonstrate the approach on the inverse graphics problem of 3-D object reconstruction from limited SAR imagery using high-fidelity simulated SAR data.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Differentiable Rendering for Synthetic Aperture Radar Imagery


    Beteiligte:


    Erscheinungsdatum :

    01.02.2024


    Format / Umfang :

    2886440 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Analysis of synthetic aperture radar imagery

    Blanchard, B. J. | NTRS | 1977


    Evaluation of Compressed Synthetic Aperture Radar Imagery

    Kuperman, G. G. / Penrod, T. D. / IEEE; Dayton Section et al. | British Library Conference Proceedings | 1994



    Speckle modeling and reduction in synthetic aperture radar imagery

    Lankoande, O. / Hayat, M.M. / Santhanam, B. | IEEE | 2005


    Characterization of Phase Information of Synthetic Aperture Radar Imagery

    Moore, Linda J. / Rigling, Brian D. / Penno, Robert P. | IEEE | 2019