Several formulations are possible for the optimization of N-impulse two-body orbit transfers. One formulation that assumes the first N − 1 impulses are design variables, and implements Lambert’s algorithm in the final leg is considered here. This paper presents a derivation for the analytic expressions of the gradients needed to optimize a transfer using this formulation. The derivations of the analytic gradients, verification tests using complex-step differentiation, as well as numerical case studies for three-impulse orbit transfers are presented. The numerical case studies highlight a significant reduction in the computational cost, measured in terms of the number of objective function evaluations.
Impact of Using Analytic Derivatives In Optimization For N-Impulse Orbit Transfer Problems
J Astronaut Sci
The Journal of the Astronautical Sciences ; 69 , 2 ; 218-250
2022-04-01
33 pages
Article (Journal)
Electronic Resource
English
Two-body problem , Impulsive maneuvers , Analytic derivatives , Trajectory optimization , Orbit transfer optimization Engineering , Aerospace Technology and Astronautics , Space Sciences (including Extraterrestrial Physics, Space Exploration and Astronautics) , Mathematical Applications in the Physical Sciences
Two-impulse transfer vs one-impulse transfer, analytic theory
Engineering Index Backfile | 1963
|Optimum Orbit Transfer by Impulse
NTIS | 1959
|