A high-performance inner position controller and accurate interaction torque sensing capability are essential for the admittance control of the flexible joint. To achieve this, most of the prior works use the lumped disturbance observer based on a single encoder with an installed force sensor. This brings a burden to system integration. In this paper, a novel dual-disturbance observer based on dual-encoder feedback is proposed on top of the conventional feedforward and feedback composite control, so that the friction and external torque are estimated and compensated separately. Better disturbance rejection ability is achieved with the proposed inner-loop position controller. In addition, the estimated external torque is fed into the admittance controller, thereby achieving compliant control of the flexible joint without the torque sensor. Real-time experiments are performed to demonstrate the practical appeal of the proposed method.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Admittance Control of Flexible Joint with Dual-Disturbance Observer


    Additional title:

    Lect.Notes Computer


    Contributors:
    Yang, Huayong (editor) / Liu, Honghai (editor) / Zou, Jun (editor) / Yin, Zhouping (editor) / Liu, Lianqing (editor) / Yang, Geng (editor) / Ouyang, Xiaoping (editor) / Wang, Zhiyong (editor) / Wan, Hongyu (author) / Chen, Silu (author)

    Conference:

    International Conference on Intelligent Robotics and Applications ; 2023 ; Hangzhou, China July 05, 2023 - July 07, 2023



    Publication date :

    2023-10-16


    Size :

    11 pages




    Type of media :

    Article/Chapter (Book)


    Type of material :

    Electronic Resource


    Language :

    English