The flight mechanics is an important ingredient in vehicle and subsystem design, its performance evaluation and its validation. It deals with forces and moments acting on bodies and the response of the bodies to the applied forces and moments. Typical applications are trajectory design, optimum payload estimation, navigation, guidance and control (NGC) system algorithm design, estimation of loads on vehicle and various subsystems, mission design, vehicle sequencing, performance evaluations of subsystems, validation of NGC systems and evaluation of mission performance. Flight mechanics consists of two processes, namely, modelling and solution where the modelling represents subsystems, vehicle, forces and moments acting on it, their operating environment and the dynamics of vehicle and subsystem. The solution involves obtaining the solutions to the mathematical models, which truly represent the response of the vehicle and subsystems. To achieve the error-free design, the various models used for the vehicle, subsystems, environment, forces and moments generated by the respective systems as well as the dynamics of the systems under the influence of the forces and moments have to represent very close to the physical system and process. The systems models vary from simple three-dimensional model for the translational motion of the vehicle centre of gravity to the detailed six-degrees-of-freedom model along with the flexible vehicle structural dynamics. In addition, to evaluate the integrated system performance, the modelling of the vehicle onboard system elements such as sensors, navigation, guidance and control systems, the corresponding algorithms and signal flows simulating the delays in data transmission among various systems are required. In this chapter, the role of flight mechanics in the STS design process and the need for the integrated design approach are explained. The different coordinate systems used to represent the mathematical models, vehicle attitude sign conventions and the coordinate transformation to transfer the data between the reference frames are described. Subsequently, various models necessary for representing vehicle, subsystem and environment and the methodology for evaluating the system response are included. The usage of the flight mechanics models in the design process is also highlighted.
Flight Mechanics
Integrated Design for Space Transportation System ; Chapter : 8 ; 285-328
2015-01-01
44 pages
Article/Chapter (Book)
Electronic Resource
English
Flight mechanics , Coordinate systems , Vehicle attitude , Environment model , Gravitational model , Atmospheric model , Wind model , Vehicle model , Jet damping , Slosh , Guidance and control , Navigation and flexible dynamics Engineering , Aerospace Technology and Astronautics , Engineering Design , Transportation Technology and Traffic Engineering
AIAA | 1988
|SLUB | 1962
|Springer Verlag | 2018
|Springer Verlag | 2016
|Online Contents | 2009