In Chap. 4, we have studied feedback linearizationFeedback linearization of the following affine nonlinear system: x ˙ = f ( x ) + i = 1 m u i g i ( x ) , x R n \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{x}} = f(x)+\sum _{i=1}^{m} u_i g_i (x), \quad x \in {\mathbb R}^n $$\end{document} Some of the systems that cannot be linearized only by coordinate transformations can be linearized using feedbackFeedback in addition to coordinate transformations. This chapter shows that more nonlinear systems can be linearized using the more general dynamic feedbackDynamic feedback than the static feedback used in Chap. 4. For example, consider system (4.80),which is not feedback linearizable, in Example 4.3.8.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Dynamic Feedback Linearization


    Contributors:

    Published in:

    Publication date :

    2022-09-03


    Size :

    35 pages




    Type of media :

    Article/Chapter (Book)


    Type of material :

    Electronic Resource


    Language :

    English




    Feedback Linearization

    von Ellenrieder, Karl Dietrich | Springer Verlag | 2021


    Feedback Linearization

    Lee, Hong-Gi | Springer Verlag | 2022


    Feedback Linearization

    Jaulin, Luc | Wiley | 2019


    FEEDBACK LINEARIZATION OF SHIMMY

    Stepan, G. / Goodwine, B. | British Library Conference Proceedings | 1998


    Dynamic Feedback Linearization of a UAV Suspended Load System

    Mohammadhasani, Arash / Lawati, Mohamed Al / Jiang, Zifei et al. | IEEE | 2022