In Chap. 4, we have studied feedback linearizationFeedback linearization of the following affine nonlinear system: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{x}} = f(x)+\sum _{i=1}^{m} u_i g_i (x), \quad x \in {\mathbb R}^n $$\end{document} Some of the systems that cannot be linearized only by coordinate transformations can be linearized using feedbackFeedback in addition to coordinate transformations. This chapter shows that more nonlinear systems can be linearized using the more general dynamic feedbackDynamic feedback than the static feedback used in Chap. 4. For example, consider system (4.80),which is not feedback linearizable, in Example 4.3.8.
Dynamic Feedback Linearization
Linearization of Nonlinear Control Systems ; Kapitel : 6 ; 227-261
03.09.2022
35 pages
Aufsatz/Kapitel (Buch)
Elektronische Ressource
Englisch
Springer Verlag | 2021
|Springer Verlag | 2022
|Wiley | 2019
|FEEDBACK LINEARIZATION OF SHIMMY
British Library Conference Proceedings | 1998
|