Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen


    Exportieren, teilen und zitieren



    Titel :

    CAN YOU TRUST YOUR AUTONOMOUS CAR? INTERPRETABLE AND VERIFIABLY SAFE REINFORCEMENT LEARNING


    Beteiligte:

    Kongress:

    IEEE intelligent vehicles symposium


    Erscheinungsdatum :

    01.01.2021


    Format / Umfang :

    8 pages


    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch



    Can You Trust Your Autonomous Car? Interpretable and Verifiably Safe Reinforcement Learning

    Schmidt, Lukas M. / Kontes, Georgios / Plinge, Axel et al. | IEEE | 2021


    MLNav: Verifiably Safe, ML-Assisted Path Planning

    Ono, Hiro / Abcouwer, Neil / Daftry, Shreyansh | NTRS | 2022


    Interpretable Autonomous Driving Model Based on Cognitive Reinforcement Learning

    Li, Yijia / Qi, Hao / Zhu, Fenghua et al. | IEEE | 2024


    Interpretable End-to-End Urban Autonomous Driving With Latent Deep Reinforcement Learning

    Chen, Jianyu / Li, Shengbo Eben / Tomizuka, Masayoshi | IEEE | 2022


    Safe Reinforcement Learning with Policy-Guided Planning for Autonomous Driving

    Rong, Jikun / Luan, Nan | British Library Conference Proceedings | 2020