Human-Machine Interaction for Automated Vehicles: Driver Status Monitoring and the Takeover Process explains how to design an intelligent human-machine interface by characterizing driver behavior before and during the takeover process. Multiple solutions are presented to accommodate different sensing technologies, driving environments and driving styles. Depending on the availability and location of the camera, the recognition of driving and non-driving tasks can be based on eye gaze, head movement, hand gesture or a combination. Technical solutions to recognize drivers various behaviors in adaptive automated driving are described with associated implications to the driving quality. Finally, cutting-edge insights to improve the human-machine-interface design for safety and driving efficiency are also provided, based on the use of this sensing capability to measure drivers' cognition capability. Covers everything needed to design an effective driver monitoring system, including sensors, areas to monitor, computing devices, and data analysis algorithms Explores aspects of driver behavior that should be considered when designing an intelligent HMI Examines the L3 take-over process in detail.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Human-machine interaction for automated vehicles : driver status monitoring and the takeover process


    Beteiligte:
    ZHAO, YIFAN. (Autor:in) / Lv, Chen (Mitwirkende:r) / Yang, Lichao (Mitwirkende:r)

    Erscheinungsdatum :

    2023


    Format / Umfang :

    1 online resource


    Anmerkungen:

    Campusweiter Zugriff (Universität Hannover) - Vervielfältigungen (z.B. Kopien, Downloads) sind nur von einzelnen Kapiteln oder Seiten und nur zum eigenen wissenschaftlichen Gebrauch erlaubt. Keine Weitergabe an Dritte. Kein systematisches Downloaden durch Robots.



    Medientyp :

    Buch


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Klassifikation :

    DDC:    629.2046




    Identifying factors affecting driver takeover time and crash risk during the automated driving takeover process

    Wang, Changshuai / Xu, Chengcheng / Shao, Yongcheng et al. | Taylor & Francis Verlag | 2025


    Predicting Driver Takeover Time in Conditionally Automated Driving

    Ayoub, Jackie / Du, Na / Yang, X. Jessie et al. | IEEE | 2022


    Predicting Driver Takeover Time in Conditionally Automated Driving

    Ayoub, Jackie / Du, Na / Yang, X. Jessie et al. | ArXiv | 2021

    Freier Zugriff

    Man-machine co-driving process driver state monitoring device and takeover capability evaluation method

    ZHANG JINCHONG / SHI JUAN / QIN KONGJIAN et al. | Europäisches Patentamt | 2021

    Freier Zugriff