Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Deep-Learning Based Optimization Approach to Address Stop-Skipping Strategy in Urban Rail Transit Lines



    Kongress:

    International Conference on Transportation and Development ; 2022 ; Seattle, Wash.



    Erscheinungsdatum :

    2022



    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch



    A Deep-Learning Based Optimization Approach to Address Stop-Skipping Strategy in Urban Rail Transit Lines

    Javadinasr, Mohammadjavad / Mohammadian, Abolfazl (Kouros) / Parsa, Amirbahador | ASCE | 2022


    Efficient Bilevel Approach for Urban Rail Transit Operation With Stop-Skipping

    Wang, Yihui / De Schutter, Bart / van den Boom, Ton J. J. et al. | IEEE | 2014


    Optimization Model of Operation Plan of Urban Single-Line Rail Transit Using Stop-Skip Strategy

    Zhao, Junru / Yang, Guixin / Te, Juncheng Li et al. | ASCE | 2020


    Timetable Optimization of Urban Rail Transit: A Flexible Skip-Stop Scheme

    Zhang, Peitong / Sun, Zhanbo / Liu, Xiaobo | ASCE | 2018