Preface xi List of Figures xiii List of Tables xvii List of Contributors xix List of Abbreviations xxi 1 Satellite System Design ⁰́₃ A Reverse Engineering Case Study 1 1.1 Introduction 2 1.1.1 Motivation for the mission 2 1.1.2 Overview 4 1.1.3 Mission Analysis 4 1.1.4 Operational Orbit 6 1.2 System Design 6 1.2.1 System configuration 6 1.3 Payload Instruments 7 1.3.1 Environmental testing and radiation sensor 7 1.3.2 Q/V band communication and propagation 7 1.3.3 Active pixel star tracker 8 1.3.4 Optical communications and Ka-band downlink 8 1.4 Attitude Determination and Orbit Control (ADCS) 10 1.4.1 ADCS design process 10 1.4.2 ADCS design of spacecraft 12 1.4.3 Tradeoff suggestions 12 1.5 Power Subsystem (POW) 13 1.5.1 Power subsystem design process 13 1.5.2 List of equipment 14 1.5.3 Tradeoff suggestions 15 1.6 Communication Subsystem (COM) 15 1.6.1 Communication subsystem design process 15 1.6.2 List of equipment 17 1.7 Command and Data Handling Subsystem (C&DH) 17 1.8 Propulsion Subsystem 18 1.8.1 List of equipment 19 1.8.2 Tradeoff suggestions 19 1.9 Thermal Control Subsystem 20 1.9.1 List of equipment 21 1.9.2 Tradeoff suggestions 22 1.10 Structural Subsystem 22 1.10.1 List of equipment 23 1.10.2 Tradeoff suggestions 24 2 Modeling and Analysis of Advanced Composite Structures: Functionally Graded Structures 27 2.1 Functionally Graded Materials 28 2.2 Material Variation Laws 32 2.2.1 Exponential law 32 2.2.2 Power law 33 2.2.3 Sigmoidal law 34 2.2.4 Advanced functionally graded sandwich plates 35 2.2.4.1 Type A Sandwich plate 35 2.2.4.2 Type B Sandwich plate 38 2.3 Shear Deformation Theories 41 2.4 Choice of Unknown Variables 43 2.5 Solution Methodology 44 2.6 Structural Analyses 44 3 Detailed Study of DeltaWing Aerodynamics 49 3.1 Introduction 49 3.1.1 Subsonic flow with delta (Î₄) wings 53 3.1.2 Supersonic flow with delta (Î₄) wings 55 3.1.3 Features of flow detachment or separation 56 3.1.4 Delta (Î₄) wing with subsonic leading-edge 56 3.1.5 Supersonic leading-edge delta (Î₄) wing 58 3.1.6 Highly swept wings with flow separation 59 3.2 Literature Review 62 3.2.1 Slender delta wings 62 3.2.1.1 Leading-edge vortices 62 3.2.2 Vortex breakdown 63 3.3 Non-slender Delta Wings 63 3.4 Vortex Interactions 64 3.5 Buffeting 65 3.6 Delta Wings in Unsteady Flows 66 3.7 Flow⁰́₃Structure Interactions 66 3.8 Conclusions 67 4 Green Propellant ⁰́₃ The Future of Space Propulsion Systems 73 4.1 Introduction 74 4.2 Need for Green Propellant 76 4.3 Development in Various Compositions 76 4.4 Applications 78 4.4.1 Boosters 78 4.4.2 Manned capsule reactive control systems and landing retrorockets 78 4.4.3 Automatic interplanetary missions 78 4.4.4 Toxicity and control 79 4.5 Alternative Propellant Working Areas 79 4.6 The Need for Green Rocket Propulsion 80 4.7 Properties and Hazards 82 4.7.1 Section excerpts 85 4.7.2 Thruster development 85 4.8 Development of the HPGP Propulsion System 85 4.8.1 Propellant development LMP-103S 86 4.8.2 PRISMA 86 5 A Study of Different Techniques for Reducing Drag and Heating Problems on a Blunt Body at Supersonic and Hypersonic Speed 89 5.1 Introduction 90 5.2 Geometrical Method 91 5.2.1 Conventional spike 91 5.2.2 Aerodisk 94 5.2.3 Cavity 98 5.2.4 Multi-row disk 101 5.3 Injecting Mass 102 5.3.1 Counterflowing jet 102 5.3.2 Breathing blunt nose method 105 5.4 Laser and Plasma Energy Techniques 106 5.4.1 Energy deposition method 106 5.4.2 Laser-plasma energy 108 5.5 Magneto-Aerodynamics Methods 109 5.5.1 Magneto-aerodynamic 110 5.5.2 Heat addition method 110 5.6 Combinational Methods 111 5.6.1 Combination of aerospike and counterflowing jet 112 5.6.2 Combination of aerospike and heat addition 115 5.6.3 Combination of counterflowing jet and energy deposition 117 5.6.4 Combination of counterflowing jet and forwardfacing cavity 120 5.7 Conclusions 121 6 Industry 4.0 in Aerospace Domain 129 6.1 Introduction 130 6.2 Industry 4.0 132 6.2.1 Important technological changes 133 6.3 The Aerospace Industry 134 6.3.1 Challenges aerospace companies must overcome 136 6.3.1.1 Rising fuel costs 136 6.3.1.2 Regulatory obstacles 137 6.3.1.3 Supply chain integration in aerospace 137 6.4 Requirement for a Digital Transformation 138 6.5 Review of the Current State 138 6.6 Conclusions 140 7 Investigating Recent Trends and Advancements in the Global Nanosatellite Environs ⁰́₃ The Era of CubeSats 143 7.1 Introduction 144 7.2 History 145 7.2.1 CubeSat industry analysis 146 7.2.2 Market size 146 7.2.3 Importance/significance 147 7.2.4 Advantages against conventional satellites 148 7.2.5 Disadvantages against conventional satellites 149 7.2.6 COVID impact 150 7.3 CubeSat Application Trends 150 7.3.1 Remote sensing ⁰́₃ need for Himalayan glacier monitoring 150 7.3.2 Interplanetary missions 153 7.3.3 Military applications 154 7.3.4 Space debris detection 157 7.4 CubeSat Subsystem Development Trends 158 7.5 Limitations of Current Technologies 160 7.6 Structural Subsystem ⁰́₃ Composites Materials 160 7.7 ADCS ⁰́₃ Magnetic Bearing Systems 163 7.8 Power System 165 7.9 Propulsion System 168 7.10 Conclusions 172 8 Experimental and Numerical Investigation on Supersonic Intake Buzz: A Survey 177 8.1 Introduction 178 8.1.1 Dailey criterion (based on ramp body flow separation) 181 8.1.2 Ferri criterion (based on vortex sheet interaction on cowl lip) 182 8.2 Classification of Intake 186 8.3 Operation of Mixed Compression Intake 187 8.3.1 Start/unstart of intake 188 8.3.2 Influencing parameters 189 8.3.3 Engine face condition 190 8.4 Shock-wave⁰́₃Boundary-layer Interaction 190 8.5 Literature Review of Experimental Analysis of Supersonic Intake Buzz 192 8.6 Literature Review of Numerical Analysis of Supersonic Intake Buzz 201 8.7 Conclusions 205 9 Application of Artificial Intelligence System in Aerospace Area 211 9.1 Introduction 212 9.2 Application of AI in Aerospace Area 218 9.2.1 Autonomous systems 218 9.2.2 Aircraft maintenance 220 9.2.3 Flight operations and air traffic management 223 9.2.4 Weather forecasting 224 9.2.5 Aircraft design and simulation 226 9.2.6 Satellite operations 229 9.2.7 Airline customer service 231 9.2.8 Airspace security 232 9.3 Conclusions 233 Index 237 About the Editors 239.
Advances in aerospace technologies
2024
1 online resource.
Campusweiter Zugriff (Universität Hannover) - Vervielfältigungen (z.B. Kopien, Downloads) sind nur von einzelnen Kapiteln oder Seiten und nur zum eigenen wissenschaftlichen Gebrauch erlaubt. Keine Weitergabe an Dritte. Kein systematisches Downloaden durch Robots.
Buch
Elektronische Ressource
Englisch
DDC: | 629.1 |
Recent advances in applique film technologies for aerospace coatings
Tema Archiv | 2003
|Emerging technologies Advances on the horizon could yet revolutionise aerospace
Online Contents | 2000
|Emerging aerospace technologies
NTRS | 1985
|Emerging Aerospace Technologies
NTIS | 1985
|Advances in aerospace propulsion
TIBKAT | 1983
|