This paper introduces a deep transformer network for estimating the relative six-dimensional (6D) pose of an unmanned aerial vehicle (UAV) with respect to a ship using monocular images. A synthetic data set of ship images is created and annotated with two-dimensional keypoints of multiple ship parts. A transformer neural network model is trained to detect these keypoints and estimate the 6D pose of each part. The estimates are integrated using Bayesian fusion. The model is tested on synthetic data and in situ flight experiments, demonstrating robustness and accuracy in various lighting conditions. The position estimation error is approximately 0.8 and 1.0% of the distance to the ship for the synthetic data and the flight experiments, respectively. The method has potential applications for ship-based autonomous UAV landing and navigation.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Deep Transformer Network for Monocular Pose Estimation of Shipborne Unmanned Aerial Vehicle


    Beteiligte:

    Erschienen in:

    Erscheinungsdatum :

    01.08.2025




    Medientyp :

    Aufsatz (Konferenz) , Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Unmanned aerial vehicle shipborne portable ground station system

    SHAO LIANGFENG / YUAN XIWEI / RAO YONGHONG et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Telescopic rotating shipborne unmanned aerial vehicle pelvic fin

    YANG JIANLONG / SONG XIANG / SUI LIYAN | Europäisches Patentamt | 2023

    Freier Zugriff

    Shipborne unmanned aerial vehicle undercarriage and adjusting method thereof

    WANG XIANQIAO / XIAO LIN / LYU HONGGANG et al. | Europäisches Patentamt | 2022

    Freier Zugriff

    Revisiting Monocular Satellite Pose Estimation With Transformer

    Wang, Zi / Zhang, Zhuo / Sun, Xiaoliang et al. | IEEE | 2022


    Unmanned sampling, throwing and clamping equipment based on shipborne unmanned aerial vehicle

    ZHAO JINGTAO / WU FUYU / KAN JING et al. | Europäisches Patentamt | 2024

    Freier Zugriff