Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Enhancing Neural Network Explainability with Variational Autoencoders


    Beteiligte:
    Tran, Loc (Autor:in) / Dolph, Chester (Autor:in) / Zhao, Derek (Autor:in)

    Kongress:

    AIAA Scitech 2021 Forum



    Erscheinungsdatum :

    01.01.2021




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    ENHANCING NEURAL NETWORK EXPLAINABILITY WITH VARIATIONAL AUTOENCODERS

    Tran, Loc / Dolph, Chester / Zhao, Derek | TIBKAT | 2021


    Variational Autoencoders

    Ghojogh, Benyamin / Crowley, Mark / Karray, Fakhri et al. | Springer Verlag | 2022


    Deep Tracking Portfolios Using Autoencoders and Variational Autoencoders

    Urrego, Daniel Aragón / Nieto, Oscar Eduardo Reyes / Quimbayo, Carlos Andrés Zapata | Springer Verlag | 2024


    Certifiably Robust Variational Autoencoders

    Barrett, Ben / Camuto, Alexander / Willetts, Matthew et al. | ArXiv | 2021

    Freier Zugriff