This paper presents a new approach to estimate an observed space object’s shape, while also inferring other attributes, such as its inertial attitude and surface parameters. An adaptive Hamiltonian Markov chain Monte Carlo estimation approach is employed, which uses light-curve data and process inversion to estimate the shape and other attributes. The main advantage of this approach over previous ones is that it can estimate these attributes simultaneously, whereas previous approaches typically rely on a priori knowledge of one or more of them to estimate a particular attribute. Also, unlike previous approaches, the new approach is shown to work well for relatively high dimensions and non-Gaussian distributions of the light-curve-inversion problem. Simulation results involving single- and multiple-faceted objects are shown. Good results are obtained for all cases.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Space-Object Shape Inversion via Adaptive Hamiltonian Markov Chain Monte Carlo


    Beteiligte:

    Erschienen in:

    Erscheinungsdatum :

    01.01.2018




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch






    Sensitivity Analysis of Markov Chain Monte Carlo

    Millwater, Harry / Vazquez, Eric / Wu, Justin et al. | AIAA | 2010


    Markov Chain Monte Carlo Modular Ensemble Tracking

    Penne, T. / Tilmant, C. / Chateau, T. et al. | British Library Online Contents | 2013


    Particle smoothing via Markov chain Monte Carlo in general state space models

    Gao, Meng / Zhang, Hui | British Library Online Contents | 2018