This work documents high-speed wind-tunnel experiments conducted on a pitching airfoil equipped with an array of combustion-powered actuators. The main objective of these experiments was to demonstrate the stall-suppression capability of combustion-powered actuators on a high-lift rotorcraft airfoil (the VR-12) at relevant Mach numbers. Through unsteady pressure measurements at the airfoil surface, it was shown that combustion-powered actuators could positively affect the stall behavior of the VR-12 at Mach numbers up to 0.4. Static airfoil results demonstrated 25 and 50% increases in poststall lift at Mach numbers of 0.4 and 0.3, respectively. Deep dynamic stall results showed cycle-averaged lift coefficient increases up to 11% at Mach 0.4. Furthermore, it was shown that these benefits could be achieved with relatively few pulses during the downstroke and with no need to preanticipate the stall event. The flow mechanisms responsible for stall suppression were investigated using particle image velocimetry. The flow structures found at these Mach numbers appeared to be very similar to the flow structures noted previously at very low Mach numbers.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    High-Speed Experiments on Combustion-Powered Actuation for Dynamic Stall Suppression


    Beteiligte:

    Erschienen in:

    AIAA Journal ; 55 , 9 ; 3001-3015


    Erscheinungsdatum :

    01.09.2017




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    High-Speed Experiments on Combustion-Powered Actuation for Dynamic Stall Suppression

    Matalanis, Claude / Schaeffler, Norman / Lorber, Peter et al. | British Library Conference Proceedings | 2016


    High-Speed Experiments on Combustion-Powered Actuation for Dynamic Stall Suppression

    Matalanis, Claude / Bowles, Patrick / Lorber, Peter et al. | NTRS | 2016


    Dynamic Stall Suppression Using Combustion-Powered Actuation (COMPACT)

    C. G. Matalanis / P. O. Bowles / S. Jee et al. | NTIS | 2016


    Dynamic Stall Suppression Using Combustion-Powered Actuation (COMPACT)

    Matalanis, Claude G. / Bowles, Patrick O. / Jee, Solkeun et al. | NTRS | 2016


    Combustion-Powered Actuation for Dynamic Stall Suppression - Simulations and Low-Mach Experiments

    Matalanis, C. / Min, B. / Bowles, P. et al. | British Library Conference Proceedings | 2014